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I identify the effects of class size on student achievement using longitudinal
variation in the population associated with each grade in 649 elementary schools. I
use variation in class size driven by idiosyncratic variation in the population. I also
use discrete jumps in class size that occur when a small change in enrollment
triggers a maximum or minimum class size rule. The estimates indicate that class
size does not have a statistically significant effect on student achievement. I rule
out even modest effects (2 to 4 percent of a standard deviation in scores for a 10
percent reduction in class size).

I. INTRODUCTION

Class size reduction is probably the most popular and most
funded school improvement policy in the United States. In 1996
the California legislature dedicated one billion dollars per year to
class size reduction. The 1999 federal budget contained 12 billion
dollars (over seven years) for the same purpose. Class size
reductions are enacted often because they are popular with nearly
every constituency interested in schools. Parents like smaller
classes because their personal experience suggests that they
themselves give more to each child when they have fewer children
to handle. Even if parents in a school disagree bitterly about
educational methods, they can agree that class size reduction is
good: smaller classes give teachers the opportunity to practice
more of each parent’s favored educational method. Teachers,
teachers’ unions, and administrators like smaller classes for the
same reasons parents do, but they may also like smaller classes
for reasons that spring from self-interest. Teachers may like
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smaller classes because they reduce the effort that they must
expend in order to deliver instruction. Teachers’ unions may like
class size reductions because they increase the demand for
teachers. Administrators may like class size reductions because
they increase the size of their domain. As a result of the policy’s
popularity, the twentieth century has been a period of continuous
decline in class size, to the point where American elementary
schools had, on average, 18.6 students per teacher in the 1997–
1998 school year.1

Nevertheless, there are both economic and empirical prob-
lems with class size reduction policies. On the economic front,
class size is a primary example of the education production
function fallacy. It is conventional to estimate the relationship
between educational inputs (like class size) and outputs (achieve-
ment) and to call the relationship an ‘‘education production
function.’’ This nomenclature suggests that inputs translate sys-
temically into achievement, as they do in the production functions
of profit-maximizing firms. The analogy is a false one, however,
because firms’ production functions are not just a result of their
ability to turn inputs into outputs. A firm’s production function is
the result of maximizing an objective (profits), given a production
possibilities set. It is not obvious that schools have stringent
achievement maximization objectives imposed on them. As de-
scribed above, class size reductions can fulfill a variety of objec-
tives, not all of which are related to achievement. Thus, while
class size reduction always affords opportunities for increased
investment in each child’s learning, it is not obvious that every
school takes up such opportunities. The actual effect of reducing
class size will depend on the incentives a school faces. Put another
way, if a policy-maker wants to predict the effect that a proposed
class size reduction would have, she should rely on evidence from
schools that face incentives that are similar to the incentives that
schools would face under the proposed policy.

On the empirical front, class size is difficult to study.2 The
vast majority of variation in class size is the result of choices made
by parents, schooling providers, or courts and legislatures. Thus,

1. See National Center for Education Statistics [1999]. There are differences
between the student-teacher ratio and class size, but the differences are less of a
concern for elementary schools than for secondary schools. In any case, the
differences are not relevant to the empirical work in this paper, because I use class
size as reported by schools.

2. Surveys of the evidence on class size include Hanushek [1996, 1986], Card
and Krueger [1996], and Betts [1995].
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most of the observed variation in class size is correlated with other
determinants of student achievement and is likely to produce
biased results. This may appear to be an obvious point, but though
researchers often claim that the variation they use is not endoge-
nous to student achievement, they rarely go on to explain where
the variation does come from. The processes by which school
inputs are determined should make us doubt that variation in
school inputs is exogenous unless there is some explicit reason
why we should think it is.

This criticism does not apply to explicit experiments that
randomly assign some students to small classes and other stu-
dents to large ones. Project Star is an experiment of this type, and
evidence based on it has manifest advantages.3 These advantages,
however, are offset by a few disadvantages. Explicit experiments
are rare (tempting interpreters to extrapolate the results unduly),
many experiments take place in developing countries (so that the
range of inputs is not relevant for the United States), and—most
importantly—the actors in an experiment are aware of it. For
instance, the schools in a class size experiment may realize that if
the experiment fails to show that the policy is effective, the policy
will never be broadly enacted. In such cases the schools have
incentives that the fully enacted policy would not give. That is, the
experiment alters the incentive conditions, so that the production
function being estimated is not the production function that would
be in effect if the policy were fully enacted. In addition, some
individuals temporarily increase their productivity when they are
being evaluated. This phenomenon, known as the ‘‘Hawthorne
effect,’’ can make policies appear to have productivity effects that
they would not have if fully enacted. Finally, individuals some-
times try to undo the randomness of the experiment. For instance,
some administrators may try to fill the small classes with children
who are most in need of individual attention (generating results
that are biased against finding that class size reduction works).
Other administrators may assign their best teachers to the small
classes or monitor the small classes more (generating results that
are biased toward finding that class size reduction works).

In this study I attempt to address the empirical and economic
problems with two identification strategies, both of which use
variation in class size that comes from population variation. The

3. Project Star was an explicit experiment in class size reduction in Tennessee
elementary schools. See Krueger [1999] for a description of the Project Star
results.
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first strategy uses natural randomness in the population, and its
logic is straightforward. Consider a school attendance area that
has a population that is in steady state. There is still natural
randomness in the timing of births such that the entering
kindergarten cohort varies somewhat in size. This variation is not
fully smoothed because there is discreteness in school entry rules
(for instance, children born between January 1 and December 31
in year t must enroll in first grade in year t 1 6) and because the
number of classrooms in each school is an integer. If one thinks of
a school with one classroom per grade, then natural randomness
in the population translates directly into differences in class size
between cohorts. For instance, suppose that a school attendance
area has an unusually small number of five-year olds with
birthdays in November and December 1985 but has the ‘‘deficit’’
made up by an unusually large number of five-year olds with
birthdays in January and February 1986. These small timing
differences would typically make for an unusually small kindergar-
ten cohort (say, 15 students) in the 1990–1991 school year and an
unusually large kindergarten cohort (say, 25 students) in the
1991–1992 school year. The first cohort might persistently experi-
ence small classes in grades kindergarten through 6, while the
subsequent cohort might persistently experience large classes.
Essentially, the two cohorts are randomly assigned different class
sizes.

I implement the first identification strategy by isolating the
random component of population variation using long panels of
data on enrollment and kindergarten cohorts in Connecticut
school districts. The long panels allow me to eliminate nearly all
smooth changes in population. I use residuals that remain after
fitting a quartic function of time separately for each grade in each
school.

In the second strategy I use the fact that class size jumps
abruptly when a class has to be added to or subtracted from a
grade because enrollment has triggered a maximum or minimum
class size rule. Returning to the previous example, suppose that
the 1992–1993 kindergarten cohort were 26 students and the
district’s maximum kindergarten class size were 25. Then there
would be two kindergarten classes of 13 students each in 1992–
1993. Although the difference in cohort size between 1991–1992
and 1992–1993 would be only one student, the difference in class
size would be twelve students. The logic of the identification
strategy is that there is a discontinuous relationship between
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class size and enrollment at certain known levels of enrollment
while there is a smooth relationship between achievement and the
determinants of enrollment. I use the panels of data to observe
small changes in enrollment associated with changes in the
number of classes in each grade in each school. I use information
on each district’s class size rules to determine whether change in
the number of classes was purely the result of the small change in
enrollment triggering a rule. I implement the second identifica-
tion strategy by comparing the class size and achievement of
adjacent cohorts who immediately precede and succeed each such
event.

The two identification strategies are independent of one
another and provide a check on one another’s results. I provide a
number of other specification tests as well.

One nice consequence of using population variation is that
the range of class size for which I obtain estimates is the range
that is relevant for policy. Another nice consequence is that I
observe schools functioning under the incentive conditions that
they normally experience. The one disadvantage of natural popu-
lation variation is that a teacher may adjust her teaching methods
more over two or three years of small class size than she does over
one year of small class size (even if she periodically experiences
small classes). In Project Star, most of the effect of small class size
occurred after one year, without teachers’ being trained to alter
their teaching methods. These facts suggest that teachers can
adjust quickly and without special training, if they have an
incentive to do so. In short, these facts suggest that the transitori-
ness of small class size due to population variation should not be a
problem, but I discuss the issue carefully in interpreting my
results.4

II. SOURCES OF VARIATION IN SCHOOL INPUTS AND THE

POTENTIAL FOR BIAS

Parents’ choosing schools by choosing their residences is
probably the single largest source of variation in school inputs.
Between-district variation in school inputs generated by parents’
choices is likely to generate upward biased estimates of the

4. Population variation makes teachers experience small and large classes
repeatedly, but not predictably. Note that class size is not transitory from the point
of view of a cohort of students. A cohort in a school tends to experience either small
or large classes consistently.
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efficacy of inputs. The same may be said for systematic variation
within a district over time. For instance, class size reductions will
appear to be more efficacious than they really are if parents who
contribute more to their children’s learning also choose school
districts that offer smaller class sizes. When we make simple
comparisons of schools in cross-section data or time-series data,
there is likely to be bias in favor of class size reductions.

If we identify parents who have similar attributes, there is
ample but somewhat different potential for bias. Parents choose
school inputs endogenously, based on their child’s ability and prior
achievement in school. These endogenous choices may be compen-
satory (greater inputs for children who exhibit poor achievement),
reinforcing (greater inputs for gifted children), or both. Thus,
when we compare students with similar families (using, say,
cross-section data with extensive controls for family background),
the sign of the bias is ambiguous.

Similarly, we cannot predict the sign of the bias generated by
the choices of schooling providers, such as administrators and
teachers. If providers attend more to the demands of parents who
contribute more to their children’s learning, inputs and parental
contributions will be positively correlated, generating upward
biased estimates of the efficacy of inputs. On the other hand, if
providers attend more to children with learning problems, esti-
mates will be biased downward.

The final players who determine school inputs are state and
federal judges and legislators, who mandate and fund increased
school inputs for certain students. Policy-makers pursue both
compensatory and reinforcing policies, but they tend to devote the
majority of the resources at their disposal to compensatory
policies.5 The negative bias resulting from the use of compensa-
tory policies, however, is often offset by positive omitted variables
bias caused by policy-makers’ simultaneous pursuit of complemen-
tary policies. For example, policies that decreased racial discrimi-
nation in school inputs were implemented simultaneously with
policies that decreased racial discrimination in employment. Both
types of policies could lead minority students to have higher
achievement.

5. See Salmon et al. [1995] for evidence on the prevalence of compensatory
policies in state school finance. More than 80 percent of federal money for
elementary and secondary education is devoted to compensatory policies: Title I,
bilingual education, special education, and the free and reduced-price lunch
program.
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In short, it is not surprising that empirical results differ (that
is, suffer from different biases) depending on the source of
variation in school inputs that they use.

There is a difference between variation that is not obviously
biased and variation that has an explicit reason to be random. The
systematic links between school inputs and other determinants of
student outcomes may be obscure without the variation in inputs
being exogenous. Explicitly articulating a source of exogenous
variation is preferable to simply eliminating all apparent sources
of bias. This is what I attempt to do in this paper.

III. EMPIRICAL STRATEGY

Consider the achievement of students in grade i of school j in
district k in cohort t. It is determined by class size as well as
unobserved attributes like student ability and parental contribu-
tions to learning. A general ‘‘education production function’’ that
subsumes most common specifications is

(1) Aijkt 5 b1 log (Cijkt) 1 Itb2 1 Ijb3 1 Xijktb4 1 eijkt,

where Aijkt is achievement; log (Cijkt) is the natural log of class size;
It is a vector of cohort indicator variables; Ij is a vector of school
indicator variables; Xijkt is a vector of observed student, parent,
and community characteristics; and eijkt is all other determinants
of achievement, including the unobserved attributes of the stu-
dents, parents, and community. Few studies actually include all of
the terms in equation (1), but most studies include some subset of
them.

If the measure of achievement is a test score, it is often
divided by the standard deviation of students’ scores on the test.
This common practice (which I follow in this paper) facilitates
understanding of unfamiliar test scores and allows comparisons
to be made across studies that use different tests. It is now
common to use the natural log of class size to take account of the
fact that a one-student reduction is proportionately larger from a
base of 17 students, say, than from a base of 35 students. The
vector of cohort indicator variables is included to allow for tests
that change slightly from year to year and to allow for teachers
who adjust their teaching to a test’s content. For instance, if a test
were slightly easier for all fourth graders in 1996 than it was for
all fourth graders in 1995, the slight easing would be picked up by
the cohort indicators. The vector of school indicator variables is
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included to control for any attributes of schools’ populations that
are constant across time—especially relatively unchanging at-
tributes of the community in which the school is located. The
vector X typically includes variables that describe the racial
composition and free lunch eligibility of students. It also includes
variables that describe the racial composition, educational attain-
ment, and income of local households (although school fixed
effects, if included, absorb any such variables that are constant
across cohorts of students).

1. The First Identification Method

By definition, the log of average class size is equal to log (E) 2
log (n), where E is regular enrollment, and n is the number of
classes. For now, let us focus on enrollment and suppose that the
number of classes is fixed for a given grade in a given school. I
return to the changes in the number of classes below.

Enrollment is a function of student, parent, and community
characteristics (observed and unobserved). In addition, there is
random variation in the population of children who are in the age
range appropriate for a given grade in a given year. That is, actual
enrollment has a deterministic component, Ě(X,e), which is what
enrollment would be if the timing and number of births were a
deterministic function of the population’s observed and unob-
served characteristics; and it has a random component u, which is
the variation in enrollment that results from the fact that biology
causes random variation in the timing and number of births. One
expects that u affects E proportionally, so one can write6

(2) Eijkt 5 Ěijkt(Xijkt,eijkt) · uijkt,

or log (Eijkt) 5 log (Ěijkt(Xijkt,eijkt)) 1 log (uijkt).

Log (u) is not correlated with X and e, which are determinants
of achievement, but log (u) is a determinant of log (E), so a
consistent estimate of log (u) is a good instrument for class size.
That is, if an estimate of log (u) is consistent, then it fulfills the
two basic instrumental variables conditions: it is correlated with
log (E) and uncorrelated with e. I attempt to get a consistent
estimate of log (u) using the fact that the deterministic part of
enrollment changes much more smoothly than actual enrollment

6. It is natural to suppose that the share, not the absolute number, of
‘‘deviantly’’ timed births is constant across populations of different sizes.
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does for a particular grade in a particular school in a particular
year. Consider a school attendance area that has, for various
reasons, a positive trend in the number of households with
school-aged children. (The trend could be nonlinear.) The determin-
istic part of enrollment in each grade would be a relatively smooth
function of the trend. But actual enrollment in each grade would
deviate from this relatively smooth function and might not even
be a monotonic transformation of the trend in the number of
households with school-aged children. Recall the example of the
school attendance area that had an unusually small number of
children with birthdays in November and December 1985 and an
unusually large number with birthdays in January and February
1986. These timing differences would typically generate a small
kindergarten cohort in 1990–1991 and a large one in 1991–1992,
and the later cohort could experience larger class sizes even if the
school attendance area had a negative trend in the number of
households with school-aged children. Moreover, if one were to
de-trend enrollment, one would find that the 1990–1991 cohort
had a negative residual and the 1991–1992 cohort had a positive
residual.

Any log (Ě) that changes smoothly over time can be approxi-
mated by a grade-school-specific intercept and a grade-school-
specific polynomial in time. That is, we can write

(3) log (Ěijkt) 5 a0ijk 1 a1ijkt 1 a2ijkt2 1 a3ijkt3 1 a4ijkt4 1 · · · ,

or log (Eijkt)

5 a0ijk 1 a1ijkt 1 a2ijkt2 1 a3ijkt3 1 a4ijkt4 1 · · · 1 log (uijkt).

I estimate such an equation separately for each grade in each
school. I typically have 24 years of enrollment data for each
regression. I show results that use up to a quartic in time because
quartics appear to capture all of the smooth variation over time in
enrollment within a grade within a district.7 The estimated
residual should be a consistent estimate of log (u), which is the
instrument we need for class size.

In short, the first identification strategy has three intuitive
steps: one, obtain estimates of the random part of enrollment
variation; two, use the random variation in enrollment to identify
random variation in class size; three, see how achievement is

7. In fact, the estimated residuals hardly change in the move from a cubic to a
quartic, quintic, or sixth-order polynomial.
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affected by random variation in class size. Formally, the first
identification strategy requires the following procedure. First,
estimate equation (3) separately for each grade in each school and
obtain the estimated residuals. Stack the estimated residuals to
get a vector of the estimated residuals for each school: log (ûijkt).
Second, estimate the following first-stage equation for each grade:

(4) log (Cijkt) 5 d1 log (ûijkt) 1 Itd2 1 Ijd3 1 Xijktd4 1 nijkt,

and obtain predicted log (Cijkt). Third, estimate equation (1) by
Two Stage Least Squares (2SLS), using predicted log (Cijkt).
Calculate correct standard errors for the 2SLS procedure.8 Notice
that the procedure uses within-school comparisons of enrollment,
class size, and achievement. A school fixed effect is taken out of
enrollment to form log (ûijkt); a school fixed effect is estimated in
the first-stage equation; and a school fixed effect is estimated in
the second-stage equation. One cohort in a school is being
compared with others in the same school, where the difference
between the cohorts is that one is larger than the others due to
(what appear to be) purely random circumstances.

The method just described exploits the fact that aggregate
characteristics that affect achievement, X and e, change much
more continuously than enrollment in a specific grade-school-time
does. Yet, because parents can respond directly to the class size
they observe their child experiencing, the method leaves open a
small route for bias. Consider a parent who observes that his
child’s class is unusually large. Even if the cause of the large class
is random population variation, the parent might decide to have
his child transferred to another school in the same district, might
move to another district, might send his child to a private school,
or might attempt to have his child held back a grade or advanced a
grade. Such reactions, although probably rare, would have the
potential to make X and e endogenous to u. A parent who would
react this way would have to be unusually concerned about
education, able to pay for a move, able to pay for private schooling,
or able to convince school administrators to allow a transfer. One
expects that such a parent would, in any case, make an unusually
large contribution to his child’s education, so that the endogeneity
under consideration would probably make us overestimate the
efficacy of class size reductions. In other words, classes that were

8. That is, calculate the standard errors using the actual data on class size,
not the predicted data.

QUARTERLY JOURNAL OF ECONOMICS1248

Page 1248
@xyserv1/disk4/CLS_jrnlkz/GRP_qjec/JOB_qjec115-4/DIV_113a01 lora

 by guest on D
ecem

ber 15, 2012
http://qje.oxfordjournals.org/

D
ow

nloaded from
 

http://qje.oxfordjournals.org/


randomly large would end up with a disproportionately small
share of education-concerned parents. Fortunately, one can do
better than speculate about the size and sign of this bias: a simple
modification of the estimation method eliminates the problem.

Rather than carry out the instrumental variables procedure
at the school level, one can aggregate equations (1) and (3) to the
district level and carry out the procedure at the higher level of
aggregation. At the district level, transfers among schools within
the district will cancel out, so residuals from the district-level
version of equation (3)—

(5) log (Eikt) 5 ã0ik 1 ã1ikt 1 ã2ikt2 1 ã3ikt3

1 ã4ikt4 1 · · · 1 log (uikt)

—give us a credibly consistent estimator for log (u) that has no
potential to be correlated with X or e through parents’ reacting to
large class size by transferring a child to another school within the
district. Eikt is enrollment in grade i in district k for cohort t,
summed over all of the schools in the district. Carrying out the
procedure at the district level eliminates bias caused by transfers;
it also has advantages because more years of achievement data
are available at the district level. On the other hand, carrying out
the procedure at the district level reduces the explanatory power
of the procedure. In particular, the explanatory power contributed
by large school districts is reduced because random population
variation averages out to a great extent within each cohort over a
large district. (Elementary schools in large districts, however, are
small enough that large districts do contribute significantly in
school-level estimation.)

The district-level procedure does not entirely eliminate the
potential for bias caused by parents’ reacting to class size. Parents
could still shift their child to a private school, have their child held
back or advanced a grade, or move out of the district once they
observed that their child’s class was going to be unusually large.
Fortunately, one can remove this potential for bias by using data
on the number of children in each district who were age five at the
school entry date. In other words, one can observe the potential
kindergarten cohort at the district level (‘‘K5’’) and use it as the
source of random variation in class size. One simply estimates a
version of equation (3) with the potential kindergarten cohort as
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the dependent variable:

(6) log (K5ikt)

5 ǎ0ik 1 ǎ1ikt 1 ǎ2ikt2 1 ǎ3ikt3 1 ǎ4 ikt4 1 . . . 1 log (uikt).

Equation (6) gives us a credibly consistent estimator for log (u)
that has no potential to be correlated with X or e through parents
reacting to idiosyncratically large class size by moving to another
district, sending a child to private school, or shifting a child to a
different grade. In addition to the disadvantages discussed above
for district-level estimation, the disadvantage of using kindergar-
ten cohort residuals is that they will be stronger instruments for
class size in early elementary grades than in later elementary
grades because exogenous student mobility weakens the correla-
tion between kindergarten cohort size and later grades’ cohort
sizes.

Thus far, I have not discussed changes in the number of
classes n in a grade in a school. My second identification method
exploits these changes, but they are simply a nuisance for my first
identification method. The costs and benefits of adding another
class depend not only on how much local parents care about
schooling but also on actual enrollment in any given year (even if
the rise or shortfall in actual enrollment comes from random
variation). Thus, if one carries out the procedure for the first
identification method and ignores changes in the number of
classes, the monotonicity condition for instrumental variables will
occasionally be violated: an increase in enrollment will reduce
class size if it triggers an increase in the number of classes.9 There
is a simple way to adjust the first identification method so that the
monotonicity condition is never violated. The procedure described
above is valid so long as the variation in enrollment does not
trigger a change in the number of classes. Therefore, I use
variation in enrollment that is not just within-school but is within
an expected number of classes. In other words, instead of having
school indicator variables in the first- and second-stage equations,
there is an indicator variable for each combination of a school and
expected number of classes. That is, there is a vector of indicator
variables for combinations like the following: the school is j and
its second grade is expected to have two classes, the school is j and
its second grade is expected to have three classes, and so on. The

9. See Angrist, Imbens, and Rubin [1996] for a discussion of the monotonicity
condition for instrumental variables.
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logic is straightforward. If enrollment in a school’s second grade is
randomly higher this year than it was last year but is such that
there are two second grade classes in both years, then the
regression compares the difference in achievement between the
two years with the difference in class size. If enrollment in a
school’s second grade is randomly higher this year and it triggers
a maximum class size rule so that this year there are three second
grade classes, then the regression does not compare the two years.
Notice that the expected number of classes is what matters. I use
districts’ maximum and minimum class size rules to determine
when an enrollment change would be expected to trigger a change
in the number of classes, since it is at these times that the
monotonicity condition would be violated. (If a school changes the
number of classes for reasons unrelated to enrollment but related
to, say, changes in parents’ preferences, the monotonicity condi-
tion is not violated.) Calculation of the expected number of classes
is discussed in the next subsection.

Summing up, the first identification strategy proceeds as
follows. First, estimate equation (3) separately for each grade in
each school, and obtain the estimated residuals, log (ûijkt). Second,
estimate the following first-stage equation, in which there is a
fixed effect for each school-expected number of classes combina-
tion:

(7) log (Cijkt) 5 d1 log (ûijkt) 1 Itd2 1 Ij,nj
d3 1 Xijktd4 1 nijkt.

Ij,nj is vector of indicator variables for combinations of schools and
expected number of classes. Third, estimate the following achieve-
ment equation, in which there is a fixed effect for each school-
expected number of classes combination:

(8) Aijkt 5 b1 log (Cijkt) 1 Itb2 1 Ij,nj
b3 1 Xijktb4 1 eijkt.

Calculate correct standard errors for the 2SLS procedure. Repeat
the procedure with district-level enrollment and with district-
level kindergarten cohorts.

2. The Second Identification Method

The second identification method does not treat changes in
the number of classes as a nuisance; it exploits them. It makes use
of the fact that changes in the number of classes in a grade can
produce abrupt changes in class size. The simplest way to use
these discontinuities is the cross-section method of exploiting
maximum class size thresholds. Angrist and Lavy [1999] illus-
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trate this method using Israeli schools. (Israeli schools have a
maximum class size of 40; most American districts have maxi-
mum class sizes in the range of 20 to 30 students.) For instance, if
a school has a maximum class size threshold of 25, it puts
students into one class until enrollment is 25, puts students into
two classes until enrollment is 50, and so on. Its rule can be
written as

(9) Cijkt 5
Eijkt

int [(Eijkt 2 1)/Cmax] 1 1
,

where Cmax is 25 and int (z) is the greatest integer less than or
equal to z. Class size varies abruptly and predictably when
enrollment is at a multiple of 25. These discontinuities provide
identification because the difference in the underlying population
that produces enrollment of 25 versus 26 is very small (and should
have a correspondingly small effect on achievement), but the
difference in class size for enrollment of 25 versus 26 is large (and
should have a significant effect on achievement if reductions in
class size are efficacious). Thus, the change in the predicted class
size between enrollment of 25 and enrollment of 26 based solely on
the rule given by equation (9) is a good instrument for the actual
difference in class sizes between schools with enrollment of 25 and
26. The same is true for 50 and 51, 75 and 76, and so on.

There are three essential things to understand about this
method of identification. First, the identification is independent of
the identification that comes from using log (u) as an instrument
for class size, so the two methods can be used as checks on one
another.

Second, between the discontinuities, predicted class size
varies with actual enrollment, which is, of course, a function of X
and e. Therefore, predicted class size is not a valid instrument
except when the rule triggers a change in the number of classes.
Put another way, the estimates will be consistent only if identifica-
tion relies solely on the discontinuities in equation (9). All
variation in predicted class size that is not generated by a
rule-triggered change in the number of classes is suspect and
must be discarded if bias is to be eliminated. In cross-section data
one does not observe actual changes in the number of classes, so
the only nonsuspect variation is the variation at multiples of
maximum class size—the difference in achievement for enroll-
ment of 25 versus 26, for enrollment of 50 versus 51, et cetera. In
cross section data other variation in enrollment is suspect because
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it is likely to be between-district variation that reflects differences
in the underlying populations (X and e) and could even be
endogenous to realizations of class size. Some schools routinely
have larger class sizes than others because of the way the rules
function, and parents can endogenously choose schools taking
realized class size into account. Discarding all suspect observa-
tions, however, places great demands on cross-section data, since
the results will depend on there being sufficient occurrences of
enrollment at multiples of maximum class size. Angrist and Lavy
[1999], for instance, are able to do only some of the desirable
discarding because their cross-section data contain too few occur-
rences of enrollment in the right ranges. Below, I present cross-
section results that demonstrate what happens as one discards
more and more of the suspect observations. Since my data are
actually panel data, I am able to employ a within-district method
(described below) that is more powerful and less subject to bias
than the cross-section method.

Third, identification arises only when the rule binds, so if one
uses a rule that binds only in some schools, one learns about the
effects of class size only for those schools. For instance, in Angrist
and Lavy’s [1999] data, the maximum class size rule does not bind
in districts that serve well-off households. It is useful to estimate
the effect of class size only for less-well-off students, but one must
be careful to interpret the results appropriately. If better-off
districts actually have maximum class size rules of their own that
they follow, then using a statewide rule that does not bind
everywhere is throwing away useful variation. Since there is
typically not much useful variation anyway for discontinuity-
based identification strategies, it is important to use all that
exists.

Given these issues about identification based on discontinui-
ties, I use changes in the number of classes that are generated by
small within-school changes in enrollment that trigger a district’s
maximum or minimum class size rule. This method is more
accurate and less prone to bias than the cross-section method
because one can follow enrollment in a grade in a school over time
and actually see every occasion on which the rules are triggered
by small changes in enrollment. The method also produces more
precise estimates because it compares adjacent cohorts within a
school, who are likely to be similar except for their different class
size experiences. Finally, this method has the advantage that it
uses variation from all sorts of districts. Districts choose rules
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that are relevant for them, and as long as the rules are stable, they
generate useful discontinuities in class size. The within-school
regression discontinuity method requires district-by-district infor-
mation on class size rules, which is onerous to collect. I obtained
information on each district’s rules by surveying superintendents
(see below). Note that, as long as each district’s rule is stable over
the period in question, the rules could be endogenous to the
underlying characteristics of the districts and the second identifi-
cation method would still produce consistent results. This is
because the second identification method relies on within-district
variation in class size.10

The second identification method (‘‘within-school regression
discontinuity’’) has a very simple procedure. First, I identify all of
the events in which a school increased or decreased the number of
classes in one of its grades. Second, within this group I identify all
the events in which the change in the number of classes was
predictable, given just the change in enrollment and the district’s
maximum and minimum class size rules. I keep this subset (which
is, in practice, 78 percent of all events where the number of classes
changes). That is, the expected number of classes is given by

(10) E(nijkt) 5 nijk,t21 1 Iijkt
add 2 Iijkt

subtract,

where

Iijkt
add 5 1 if

Eijkt

nijk,t21
. Cmax; 0 otherwise,

and

Iijkt
subtract 5 1 if

Eijkt

nijk,t21
, Cmin; 0 otherwise.

I keep the subset of events where the number of classes actually
increased and Iijkt

add 5 1 and where the number of classes actually

10. There is a caveat to this statement. Since districts can set lower or higher
maximum class sizes, districts will generate useful class size variation in slightly
different ranges. For instance, one district’s useful variation in class size may tend
to be in the range from 16 students to 25 students, while another’s may tend to be
in range from 18 to 27 students. If one were to find that a reduction in class size
was, say, more efficacious when it occurred above some class size, then one would
be unsure whether the greater efficacy was due to decreasing returns to reductions
in class size or greater efficacy in the sort of schools that typically choose higher
maximum class size. One could then try to sort out the explanations by examining
the characteristics of districts with lower and higher maximum class sizes. This
problem does not arise, in practice, in this study.
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decreased and Iijkt
subtract 5 1. Third, within the subset I keep the

events in which the change in enrollment that triggered the
change in class size was smaller than 20 percent. For instance, if
enrollment rose from 40 to 48, and it triggered a change in the
number of classes, I keep the event. However, if enrollment rose
from 40 to 54, I discard the event. The reason is that regression
discontinuity methods depend on a modest change in a continuous
variable, like enrollment, triggering a large change in a discrete
variable, like the number of classes. If some change in the
underlying circumstances of a school were to make both enroll-
ment and the number of classes jump by a large amount, the event
would be inappropriate for regression discontinuity methods. In
practice, I keep 94 percent of the subset at this stage.

Having identified a set of events where the number of classes
changes because a modest change in enrollment triggers a maxi-
mum or minimum class size rule, I estimate a first-differenced
version of the achievement equation—

(11) cAijkt 2 Aijk,t21d 5 b1clog (Cijkt) 2 log (Cijk,t21)d

1 Itb2 1 cXijkt 2 Xijk,t21db4 1 ceijkt 2 eijk,t21d

—using just the cohorts immediately before and after each event.
Intuitively, if school j’s third grade enrollment is modestly higher
this year than it was last year, and the enrollment increase
triggers a maximum class rule so that the number of classes rises
and class size falls, then I compare the achievement of this year’s
third grade cohort with that of last year’s third grade cohort.11

11. One may worry about ‘‘nonevents’’—occasions on which a small change in
enrollment should have triggered a change in the number of classes but did not. It
turns out that only 9 percent of would-be trigger events are actually not associated
with a change in the number of classes. Moreover, discussions with superinten-
dents suggest that alert parents tend to make sure that maximum class size rules
are enforced but try to prevent the enforcement of minimum class size rules. Thus,
ignoring nonevents may produce a small bias in favor of class size being efficacious
(smaller class sizes are associated with more alert parents). Such bias is not a
concern, given the results.

One can carry out a district-level version of the procedure for the second
identification method. The district-level procedure eliminates the possibility that
the results are due to parents’ responding (to large class sizes) by transferring
their children to other schools within the school district. Relative to the school-
level procedure, the district-level procedure has all the same advantages and
disadvantages as it has in the first identification method. Rather than carry out
the district-level procedure for the second identification method, I simply exam-
ined each event to determine whether there were offsetting enrollment changes in
other schools in the same district. I did not find any such offsetting changes.
Event-by-event examination is possible because the number of events is limited.
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3. A Note on Single-Year versus Multiple-Year Effects of a
Change in Class Size

So far, I have written all of the equations as though a change
in class size this year generates a change in achievement by the
end of the year. This is because recent empirical results suggest
that such single-year effects are the important effects (see Krue-
ger [1999] and Angrist and Lavy [1999]). It may be, however, that
such specifications are not a fair test of class size because a
student needs to be in smaller classes for a few grades before there
is any effect. In the empirical work that follows, I do provide
results for class size in the most recent year, but I mainly focus on
specifications that use the average class size that a cohort has
experienced up until the time it takes the test.

I focus on the specifications that use average class size
because they favor finding that class size is efficacious. The reason
is that a cohort usually experiences small or large classes consis-
tently,12 so that almost none of the difference between the average
class size experienced by one cohort and the next within a school is
likely to be caused by measurement error. If there were measure-
ment error, it would wash out once the class size experienced by a
cohort was averaged over a few grades. It is important to
remember that the identification strategies rely on cohort-to-
cohort differences in class size and that each cohort experiences
relatively unchanging class size.

IV. DATA

The two identification methods create a number of data
requirements. First, because the integer nature of teachers and
classrooms is useful for making natural population variation
translate into variation in class size and composition, data on the
elementary grades is needed. Elementary classes are less divis-
ible than secondary school classes because the standard method of
elementary school instruction is one teacher spending the major-
ity of each school-day with a regular group of students in one
classroom.13 Also, class size is well-defined in elementary schools
but poorly defined in middle and high schools, where students
may experience different class sizes in different subjects. The

12. This point is demonstrated below.
13. A class is the group of students who spend the majority of the school day

with one teacher. The measure of class size excludes pull-out instruction by special
education teachers or aides.
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resulting emphasis on elementary class size fits the empirical and
pedagogical debates, which have focused on class size in early
grades. Another reason for focusing on elementary class size is
that elementary schools are not large. In very large schools,
natural population variation averages out to a great extent within
each cohort.14 Finally, since school cohorts are defined by birth
date, one needs data on population-by-age at the school entry
cutoff date (which is December 31 in Connecticut).15

Connecticut school data are particularly appropriate for the
empirical strategy. The state has 649 elementary schools that belong
to 146 elementary districts.16 Overall, 25 percent of the schools have
typical cohort sizes smaller than 46 students; 50 percent have smaller
than 63 students; and 75 percent have smaller than 92 students.17

Districts are essentially towns in Connecticut and, for many years, the
towns collected annual Enumerations of Children (population-by-age
data as of January 1 for all school-aged children). In the last few years,
similar data have been compiled by Claritas Incorporated.18 The
Enumeration of Children and Claritas are the source of the potential
kindergarten cohort data. Finally, every year since 1986, Connecticut
has administered statewide tests in the fourth, sixth, and eighth
grades.19 From 1986 to 1991, test data are available by district. From
1992 onward, test data are available by school (as well as by district). I
use six years of school-level test data (from 1992–1993 to 1997–1998)

14. For the district-level versions of the procedures (which are essentially
specification tests), it is useful to have some districts that are small (that contain
only one to three elementary schools).

15. In Connecticut a child is ordinarily enrolled in kindergarten if he will be
five by December 31 of the school year.

16. Elementary schools are schools that contain some combination of grades 1
to 6. Most elementary schools in Connecticut contain grades 1 through 6, but some
districts have separate schools for the lower elementary grades and upper
elementary grades. See notes to Table I.

17. Among schools that are in districts with median household income below
the twenty-fifth percentile for Connecticut, the distribution of cohort sizes is as
follows: 43 5 25th percentile, 57 5 50th percentile, 78 5 75th percentile. Among
schools that are in districts with median household income above the seventy-fifth
percentile for Connecticut, the distribution of cohort sizes is as follows: 45 5 25th
percentile, 66 5 50th percentile, 89 5 75th percentile. Among schools that are less
than 5 percent African-American, the distribution of cohort sizes is as follows: 46 5
25th percentile, 63 5 50th percentile, 93 5 75th percentile. Among schools that are
more than 10 percent African-American, the distribution of cohort sizes is as
follows: 44 5 25th percentile, 61 5 50th percentile, 79 5 75th percentile. The last
group of schools is almost exclusively urban.

18. Some districts combine two small towns. In such cases, the towns’
population-by-age statistics are aggregated.

19. Between 1979 and 1985, Connecticut administered statewide achieve-
ment tests in the ninth grade. Ninth grade scores are not ideal for examining the
effects of elementary class size and composition, but previous versions of this paper
contain results based on the earlier tests. These results are available from the
author.
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and twelve years of district-level data (from 1986–1987 to 1997–1998).
I mainly show results for the fourth and sixth grade tests since they
are closely linked to elementary class size, but similar eighth grade
results are shown in Hoxby [1998] and are available from the author.
In most years, class size is reported by multiple sources, and cross-
checks of those sources suggest that it is accurate.20 Average class size
in Connecticut is about 21 students, and its standard deviation is
about 5.5 students, but class size ranges widely. The first percentile is
8 students, and the ninety-ninth percentile is 34 students. While
Connecticut is not unique in having appropriate data, few other states
have similarly propitious conditions and long panels of the relevant
data.

Table I shows the structure of the Connecticut data by cohort.
Each cohort is described by its likely graduating class—for instance,
one expects that children who enter sixth grade in the fall of 1991 will
be in the June 1998 graduating class. Enrollment, class size, and some
of the achievement data are available by school, by grade, and by
cohort. The kindergarten population data and some of the achieve-
ment data are available by district, by grade, and by cohort. I have 24
years of enrollment data, so I estimate the enrollment residuals based
on all 24 years of data. The large number of years allows me to get
more precise estimates of the residuals.

The tests are administered at the beginning of each school
year (September). Thus, the fourth grade tests may be affected by
class sizes in the first through third grades, but they are unlikely
to be affected by fourth grade class size. Similarly, class sizes in
first through fifth grades are relevant for the sixth grade tests.
Each equation has, as explanatory variables, the class sizes that
could have affected the dependent variable. However, note that

20. One might worry about error in the measure of class size, especially
because measurement error can be exacerbated by first-differencing. I have
verified, however, that there is little measurement error in class size by examining
multiple, independent reports on class sizes. See the notes to the Appendix. More
importantly, a cohort usually experiences small or large class size for several years
running, so almost none of the difference between the average class size experi-
enced by one cohort and the next (within a school) is likely to be caused by
measurement error. If there were measurement error, it would average out over a
few grades for a cohort. Finally, average class size is instrumented by predicted
average class size, and this should remedy measurement error bias.

Measurement error in the dependent variable would show up in the standard
errors, which are very small. The dependent variables are measured with error
because the tests are administered in September, but fortunately, there is low
student turnover. This is because families time their moves to coincide with school
changeovers. Thus, a district with moderate turnover has low within-school
turnover. In Connecticut in 1997–1998, the mean elementary school had 93
percent of its students return.
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most cohorts experience similar class sizes in the first through
sixth grades. Unusually large cohorts tend consistently to experi-
ence large class sizes, and unusually small cohorts tend consis-
tently to experience small class sizes.21

21. Statistical evidence for the last statement can be obtained by examining
the correlation between, say, a cohort’s first grade enrollment residual and its fifth

TABLE I
STRUCTURE OF THE DATA SET

Grad-
uating
class

Kinder.
cohort

District-grade level data School-grade level data

Enroll-
ment

Class
size

Tests in grade
Enroll-
ment

Class
size

Tests in grade

4 6 8 9 4 6 8

1983 ✓ ✓ ✓ ✓ ✓

1984 ✓ ✓ ✓ ✓ ✓

1985 ✓ ✓ ✓ ✓ ✓

1986 ✓ ✓ ✓ ✓ ✓

1987 ✓ ✓ ✓ ✓ ✓

1988 ✓ ✓ ✓ ✓ ✓

1989 ✓ ✓ ✓ ✓

1990 ✓ ✓ ✓ ✓

1991 ✓ ✓ ✓ ✓ ✓

1992 ✓ ✓ ✓ ✓ ✓

1993 ✓ ✓ ✓ ✓ ✓ ✓

1994 ✓ ✓ ✓ ✓ ✓ ✓

1995 ✓ ✓ ✓ ✓ ✓ ✓ ✓

1996 ✓ ✓ ✓ ✓ ✓ ✓ ✓

1997 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1998 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1999 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2001 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2002 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2003 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2004 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2005 ✓ ✓ ✓ ✓ ✓ ✓

2006 ✓ ✓ ✓ ✓ ✓ ✓

A cohort’s ‘‘graduating class’’ is the calendar year in which it would be expected to obtain its high school
diploma if its members graduated on time. For instance, if a student obtains his high school diploma in June
1998, then his graduating class is 1998. The school-level panel is slightly unbalanced because grades are
occasionally moved between schools within a district. There are 3504 school-level observations of first and
second grades (6 years times approximately 584 schools); 3464 school-level observations of third grades (6
years times approximately 577 schools); 3404 school-level of observations of fourth grades (6 years times
approximately 567 schools); 3071 school-level observations of fifth grades (6 years times approximately 511
schools); and 1150 school-level observations of sixth grades (6 years times approximately 192 schools).
Connecticut has 146 elementary districts, and there are 1752 observations in district-level regressions (12
years times 146 districts).
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Every school district in Connecticut was surveyed about its
maximum and minimum class size rules, teachers’ aides, and
mixed-grade classes. A copy of the survey is available from the
author. Responses were gathered by mail, e-mail, telephone, and
fax, and the researchers spoke to multiple people in most districts,
although the most common respondent (by far) was the district
superintendent and the second most common was a representa-
tive of the school board. The key features of the responses are as
follows. Information was obtained from every district, and super-
intendents were queried about rules in their district over the past
decade. Both maximum and minimum class size rules varied
among the districts, but the modal maximum class size was 25
and the modal minimum class size was 15. Only five districts
reported a change in their rules, and the changes were very
modest (from maximum class size of 27 to 25, for instance).22 The
lack of changes was explained by a number of superintendents,
who reported that their districts’ rules had been set during the
early 1980s when student populations in Connecticut were at
their nadir. During subsequent years, when student populations
began to grow rapidly, most districts found that maintaining their
rules was sufficiently challenging. About one-third of districts
claimed that they did not have a minimum class size rule because
such a rule would never bind. Empirically, it turned out to be true
that districts that claimed that they did not need the rule were
districts that had steady increases in their school-aged population
for the entire period. In such districts, minimum class size rules
never need to be used.23

Districts’ answers to the questions about teachers’ aides and
mixed-grade classes were relatively uniform. Although teachers’
aides and mixed-grade classes are sometimes used for pedagogical
purposes (aides are used especially for special education), they are
rarely used as a method of managing too-large classes.24

grade enrollment residual. (Any pair of grades is suitable.) The enrollment
residuals are computed using grade-school-specific regressions based on equation
(3) with a quartic in time. The enrollment residuals for any pair of grades are
computed independently. Nevertheless, there is a correlation of about 0.85
between pairs of residuals for a cohort.

22. I do not use these changes in rules. For the five districts in question, I
effectively divide each district into two: a ‘‘before change’’ district and an ‘‘after
change’’ district.

23. Two districts stated that they did not have any maximum class rules
because they would never need to be applied. These statements were confirmed by
the empirical evidence: the two districts in question have small cohort sizes for
each grade (almost always under 20).

24. Most districts were vehemently opposed to the use of aides or mixed-grade
classes as a regular remedy for too-large or too-small classes.
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The raw scores for Connecticut’s tests are not intuitive, so I
form dependent variables for the regressions by dividing each test
score by the standard deviation of schools’ scores on that test in
Connecticut.25 For the purpose of interpretation, it is convenient
that a standard deviation on each test corresponds roughly to the
state’s idea of a mastery level. For instance, on the math test the
difference between being ‘‘at the state’s goal’’ and ‘‘slightly below
the state’s goal’’ is little more than one standard deviation.
Similarly, the difference between being ‘‘slightly below the state’s
goal’’ and ‘‘below the state’s goal’’ is about one standard deviation,
and the difference between being ‘‘below the state’s goal’’ and ‘‘well
below the state’s goal’’ is about one standard deviation.

All the data used are publicly available and were obtained
from the Connecticut Department of Education or its publica-
tions. The Appendix shows unweighted descriptive statistics of
the data set, where an observation is a school.

V. SOME ILLUSTRATIVE GRAPHS

Graphs for individual schools can provide intuition about the
empirical strategy and the results. I consider three schools in
Connecticut, chosen for their illustrative value rather than their
representativeness. School A has one classroom per grade; school
B has either one or two classrooms per grade, depending on
enrollment; and school C has either two or three classrooms per
grade, depending on enrollment.26 Each of Figures I through III
shows a school’s enrollment and class size in the fifth grade, by
cohort. I selected the fifth grade because students are tested at the
beginning of the sixth grade year, but it would not have mattered
much if I had selected another grade. Figure I shows that, in
school A, enrollment and class size were identically equal for

25. The standard deviations in schools’ scores that I use come from technical
reports written by the test makers [Harcourt-Brace Educational Measurement]
and distributed by the state’s Board of Education. The standard deviation in
students’ scores on a test are about 25 percent greater than the standard
deviations in schools’ scores. If I were to use the standard deviation in students’
scores, the estimates would appear to be even more precise. For each test, I used
the median standard deviation among the years for which I have test data. The
standard deviation on a test does not differ much from year to year, however, and
the results are not sensitive to dividing each test score by the standard deviation
for its year. The technical reports are a good guide to the scoring of the tests, which
was changed once (‘‘first generation’’ versus ‘‘second generation’’ in the terminology
of tests). In the regressions I do not use data across years in which the scoring on a
test changed, and the year effects in the regressions pick up idiosyncratic changes
in the test from year to year.

26. The names of schools A, B, and C are available from the author.
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FIGURE I
Enrollment and Class Size in School A

FIGURE II
Enrollment and Class Size in School B
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every cohort, and class size varied between 10 and 23. Figure II
shows that, in school B, enrollment and class size were identically
equal for the first five cohorts, up to the graduating class of 2001.
For these first five cohorts, class size varied between 16 and 29
students. The graduating class of 2002 had enrollment of 30
students, however, and school B is in a district with a maximum
class size is 29. Therefore, school B added a second fifth grade
classroom for the graduating class of 2002. Thereafter, even
though enrollment fell back below 30 students, school B main-
tained two fifth grade classrooms because enrollment never fell so
far that the district’s minimum class size rule was triggered. The
graduating classes of 2002–2005 experienced class sizes ranging
from thirteen to fifteen. Figure III shows school C, which began
with two fifth grade classrooms and class size of 24. However,
there were 56 students in the graduating class of 1998, and school
C is a district with maximum class size of 25. Therefore, school C
added a fifth grade classroom for that cohort and kept the third
classroom until the graduating class of 2003, which had enroll-
ment of only 40 students. The minimum class size in school C’s
district is fourteen, so the rule was triggered, and school C went
back to having only two fifth grade classrooms. The next cohort,
however, had 59 students, and the third fifth grade classroom was

FIGURE III
Enrollment and Class Size in School C
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reinstated. Overall, class size varied from 14 to 24 students in
school C.

All three figures illustrate the variation that is useful for the
first identification method, which uses the variation in enrollment
that does not appear to be part of a trend and that does not trigger
a change in the number of classrooms. School A is a nice, simple
example because, although it appears to have an upward trend in
enrollment, it is obvious that much of the year-to-year variation in
enrollment is not systematic. Figures II and III illustrate the
variation that is useful for the second identification method,
which uses the changes in class size that occur when within-
school variation in enrollment triggers a maximum or minimum
class size rule. All three figures show that class size varies over a
range that covers the policy range very fully. Just in these three
schools, class size varies from 10 to 29.

Figures IV through VI superimpose each school’s average
sixth grade reading scores on its fifth grade class size. If reducing
class size improved reading scores, then we would expect to see
the two lines generally move in opposite directions, like mirror
images of one another. But, it is difficult to discern any pattern

FIGURE IV
Class Size and Reading Scores in School A
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linking reading scores and class size. The same can be said for
math scores and writing scores, which are not shown here.
Looking at these three schools, however, is hardly a systematic
way of determining whether there is a significant relationship
between achievement and class size. There is a need for regression
analysis.

VI. RESULTS

In this section I examine the effects of class size on achieve-
ment. Before showing the results for the two identification
methods described above, I show results for a few methods that
are commonly used despite having the identification problems
described in Section II. These results give one a sense of what the
data would show if one were to apply typical methods naively.

1. Results from Commonly Used Methods of Identification

Each cell in Table II shows the estimated coefficient on class
size from a separate regression. The columns define the specifica-
tion of the regression, and the rows show results for different

FIGURE V
Class Size and Reading Scores in School B
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dependent variables. For instance, the number in the upper-left-
hand cell is the effect of log average class size in grades 1 through
3 on fourth grade math scores using a specification that pools
observations across schools and cohorts (with cohort fixed effects).
This naive specification is likely to produce estimates that are
biased by correlation between class size and unobserved parent
and community attributes. Parents with unobserved good charac-
teristics are likely to choose schools with small class sizes and
communities with unobserved good qualities. In fact, the esti-
mates in the first six rows of column I are all negative and highly
statistically significant. (I discuss the bottom three rows below.) If
one were to give the estimates credence, one would say that the
coefficient in the first cell indicates that a 10 percent reduction in
class size in grades 1 through 3 improves fourth grade math scores
by 0.1468 (about 15 percent) of a standard deviation. Other
coefficients in column I are similar: a 10 percent reduction in class
size in grades 1 through 5 appears to improve sixth grade math
scores by about 13 percent of a standard deviation.

In column II, I augment the equation by adding district-level
demographic variables from the 1990 census: median household

FIGURE VI
Class Size and Reading Scores in School C
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income, the percentage of the population in poverty, the percent-
age of adults who are high school and college graduates, and the
percentages of the population who are African-American and
Hispanic. (These variables are observed at the district level only
in decennial census years.) These controls for observed parent and
community characteristics greatly attenuate the estimated effect
of class size on test scores, but the estimates are still all negative
in sign, and two of the six estimates in the first six rows are
statistically significant at the 10 percent level. In fact, the

TABLE II
NAIVE ESTIMATES OF THE EFFECTS OF CLASS SIZE ON STUDENT TEST SCORES

Each cell contains the estimate from a separate regression (and its standard
error in parentheses).

Dependent
variable

Independent
variable

I
Cohort
fixed

effects

II
Cohort fixed

effects &
demographic

controls

fourth grade math score log avg class size through
grade 3

21.4675 20.1028
(0.2067) (0.0994)

fourth grade reading
score

log avg class size through
grade 3

21.1532 20.1338
(0.1450) (0.0752)

fourth grade writing score log avg class size through
grade 3

20.5872 20.0301
(0.0919) (0.0578)

sixth grade math score log avg class size through
grade 5

21.3141 20.1364
(0.2788) (0.1209)

sixth grade reading score log avg class size through
grade 5

21.4043 20.1821
(0.2771) (0.1162)

sixth grade writing score log avg class size through
grade 5

20.5571 20.0497
(0.1409) (0.0907)

sixth—fourth grade math
score

avg class size in fourth
and fifth grds

0.1081 20.1335
(0.0829) (0.0722)

sixth—fourth grade
reading score

avg class size in fourth
and fifth grds

20.2645 20.1572
(0.0581) (0.0498)

sixth—fourth grade
writing score

avg class size in fourth
and fifth grds

20.1980 20.2950
(0.0848) (0.0968)

Source is author’s calculations based on Connecticut data set. The regressions are OLS, are weighted by
number of students over whom the dependent variable is averaged, and include a fixed effect for each cohort.
Standard errors are in parentheses and adjusted for the grouped nature of the data (multiple observations on
each school). The number of observations in the regressions for grades 1 through 6 is, respectively, 3504, 3504,
3464, 3404, 3071, 1150 (see the notes to Table I). The dependent variables are formed by dividing the average
test score by the standard deviation of Connecticut students’ scores on that test. Thus, the coefficients show
how test scores, measured in standard deviations, change with the log of class size. The demographic controls
in column II are median household income, percentage of the population in poverty, percentage of adults who
are high school graduates, percentage of adults who are college graduates, percentage of the population who
are African-American, and percentage of the population who are Hispanic.
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estimates shown in column II are similar to many of the estimates
that have generated empirical controversy. They are of mixed or
marginal statistical significance, and the effects are small. The
equations control for some observed demographics, but it is not
clear that the remaining variation in class size comes from
exogenous sources. At least some of the remaining variation is
likely to be due to unobserved demographics that are correlated
with class size in much the same way as the observed demograph-
ics are correlated with class size: parents with demographics that
are beneficial for achievement choose districts with smaller class
sizes, producing results biased toward finding that class size
reductions are efficacious. On the other hand, other demographic
controls being equal, the schools with lower class size may be
those that are receiving compensatory funds to reduce class size
because their students have unusually low achievement. This
would produce results biased against finding that class size
reductions are efficacious.

The bottom three rows of Table II show what is usually called
a value-added specification. The difference between a cohort’s
sixth grade and fourth grade test scores is regressed on the log of
the average class sizes that they experience between the two tests:
fourth and fifth grade. Such specifications are often thought to
control for all the effects of family background and neighborhood,
through the earlier test score. It is far from obvious, however, that
such claims are valid. Unobserved background may affect the
growth of a student’s achievement; unobserved background need
not be fully incorporated by the level of a student’s prior achieve-
ment. In other words, parents who provide a lot of learning
resources at home are likely to help their children learn more in
every grade, for every bundle of resources that the child gets at
school. The same parents are likely to put their children in schools
with small class size.27 In short, value-added estimates may be
biased either negatively or positively, but it is likely that the
preponderance of the bias favors class size appearing to be
efficacious. In fact, five of the six estimates in the bottom three
rows of Table II are negative and statistically significantly
different from zero at the 5 percent level. If one were to give the

27. The problem would not be alleviated if I regressed the change in test
scores on the change in the class size (average class size in fourth and fifth grades
minus average class size in first through third grades). Most of the changes in class
size that a cohort experiences would not be random. It would be the result of
reactions to the cohort’s own achievement or the result of systematic changes in
the school’s environment.
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estimates credence, one would say that a 10 percent reduction in
class size in grades 4 and 5 makes reading scores rise (between the
fourth and sixth grades) by about 16 percent of a standard
deviation, controlling for observable demographics.

The fundamental problem with all of the specifications in
Table II is that they eliminate one source of suspect variation, only
to have more obscure sources become dominant. When consider-
ing a policy variable like class size, where the vast majority of the
variation comes from suspect sources, it is more effective to start
with sources of variation that are known to be exogenous and
work from there. This is the logic behind the two identification
methods advanced in this paper.

2. Results from the First Identification Method

The first identification method attempts to use random
variation in the school-aged population, and the strategy is
implemented by instrumenting for class size with enrollment
residuals or kindergarten cohort residuals. Table III shows coeffi-
cient estimates from the first-stage equation (equation (7)). Each
cell represents a separate regression, and each contains the effect
of log (u) on the log of class size. Each column heading describes
the specification, and each row label describes the grade level for
which class size is being estimated. For instance, the upper-left-
hand cell contains the estimated coefficient on log (u) from a
regression that is based on school-level observations of first grade
class size and school-level observations of first grade enrollment
residuals, where the enrollment residuals are calculated using a
version of equation (3) that has an intercept and a linear time
trend. The estimated coefficients in the first column range from
0.8566 to 0.9773. They suggest that a random 10 percent increase
in enrollment raises class size by between 8.6 and 9.7 percent—in
other words, a little less than 1-for-1. The probable reason why the
coefficients are not even closer to 1 is that the enrollment
residuals are measured with error (they are just estimates, after
all). There is, thus, a little attenuation bias. Column II contains
the estimated coefficients on log (u) from regressions that are
based on school-level observations of class size and enrollment
residuals, where the enrollment residuals are calculated using a
version of equation (3) that has an intercept and a quartic time
trend. The estimates shown in column II are very similar to those
shown in column I: they range from 0.8546 to 0.9799. The
estimates in column III, which is estimated at the district level,
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TABLE III
COEFFICIENTS FROM FIRST-STAGE REGRESSIONS FOR IDENTIFICATION METHOD 1

Each cell contains the estimate from a separate regression (and its standard
error in parentheses).

Dependent
variable

I II IV V

Explanatory variable

Residual log
enrollment

(school-level,
linear

time trend
removed)

Residual log
enrollment

(school-level,
quartic

time trend
removed)

Residual log
enrollment

(district-level,
quartic

time trend
removed)

Residual log
kindergarten

cohort
(district-level,

quartic
time trend
removed)

log first grade class
size

0.8566 0.8546 0.7620 0.6186
(0.0110) (0.0210) (0.0349) (0.0452)

log second grade class
size

0.7294 0.7275 0.6679 0.6416
(0.0129) (0.0183) (0.0346) (0.0423)

log third grade class
size

0.8937 0.8717 0.7854 0.4557
(0.0105) (0.0164) (0.0360) (0.0459)

log fourth grade class
size

0.9419 0.8920 0.7887 0.3786
(0.0098) (0.0309) (0.0365) (0.0480)

log fifth grade class
size

0.9039 0.8678 0.7027 0.3953
(0.0128) (0.0197) (0.0345) (0.0434)

log sixth grade class
size

0.9773 0.8669 0.8356 0.3099
(0.0111) (0.0290) (0.0499) (0.0623)

fixed effects for each
‘‘school · expected
number of classes in
the grade’’ combina-
tion

yes yes

fixed effects for each
‘‘district · expected
number of classes in
the grade’’ combina-
tion

yes yes

Source is author’s calculations using Connecticut data set. Identification Method 1 attempts to use
random variation, over time, in the population of students who belong to a grade in a school as an instrument
for class size in that grade in that school. Each first-stage regression has, as its dependent variable, the log of
class size in a grade. Each regression has, as its key explanatory variable, an estimate of the part of the grade’s
population that is due to random variation. For instance, each explanatory variable in column I is the residual
from a regression of enrollment in a grade in a school on a constant and a linear time trend. The residuals come
from separate regressions for each grade in each school. Each first-stage regression contains a fixed effect for
each school-expected number of classes combination. These fixed effects ensure that the monotonicity
condition for instrumental variables is fulfilled. See Section III for further explanation. In the school level
regressions, the number of observations is 3404 in fourth grade regressions, and 1150 in sixth grade
regressions. In the district level regressions there are 1752 observations (see the notes to Table I). If the
independent variable is class size in the most recent grade, instead of average class size in grades that precede
the test, then the results for the specification in column II are 20.1304 (0.0980), 20.1204 (0.0747), 0.1550
(0.0901), 0.0304 (0.1167), 20.0330 (0.1084), and 0.0925 (0.1537).
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are also similar: they range from 0.7027 to 0.8356. There is more
attenuation bias in the district-level regressions because the
district-level enrollment residuals are a less precise measure of
the random fluctuations in enrollment experienced by any given
school in the district. Finally, column IV of Table II shows results
based on district-level kindergarten cohort residuals. As one
expects, the coefficients are somewhat lower than those of column
III because some children in the kindergarten cohort go to private
school. Moreover, a 10 percent increase in kindergarten cohort
size produces the biggest increase in first grade class size, a
smaller increase in second grade class size, and so on down to
sixth grade class size. One expects this because mobility into and
out of the district makes kindergarten-cohort size more important
for the earlier elementary grades.

Overall, the first-stage regressions suggest that enrollment
residuals are strong instruments for class size: the t-statistics in
the first two columns are all greater than 40. District-level and
kindergarten-cohort residuals are less strong as instruments, but
still strong enough: the t-statistics are generally much greater
than 10. Also, the coefficients accord with expectations, which
suggests that the residuals are being estimated in a reasonable
fashion. Residuals from school-specific intercepts and quartic
time trends are my preferred set of residuals. Moving from a
quartic polynomial to a high-order polynomials adds a negligible
amount of explanatory power and produces residuals that are not
discernibly different.

I use predicted class size based on the equations shown in
Table III to form independent variables for the second-stage
equations. For instance, to form a prediction of the log average
class size that a cohort in a school experiences in grades 1 through
3, I compute the average of that cohort’s predicted class size in
grades 1, 2, and 3, and I take the log of the result. I compute the
log of the average predicted class size, not the average of the log
predicted class sizes. I take account of ‘‘feeder schools’’—for
instance, student from two first-to-fourth grade schools may
attend the same fifth-sixth grade school.

Table IV contains the main class size results for the first
identification method. Each cell contains an estimate from a
separate regression. Column I uses first-stage regressions in
column I of Table III, column II uses first-stage regressions in
column II of Table III, and so on.

Before considering the estimated coefficients, note that the
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standard errors are small. In the school-level regressions (col-
umns I and II) the standard errors are so small that if a 10 percent
reduction in class size were to change test scores by just 2 to 4
percent of a standard deviation, the change would be statistically
significant at the 5 percent level. In the district-level regressions
(columns III and IV) the standard errors are slightly higher, but if
a 10 percent reduction in class size were to change test scores by
just 3 to 4 percent of a standard deviation, the change would be

TABLE IV
BASIC RESULTS FROM IDENTIFICATION METHOD 1: 2SLS ESTIMATES OF THE EFFECTS

OF CLASS SIZE ON STUDENT TEST SCORES

Each cell contains the estimate from a separate regression (with its standard
error in parentheses).

Dependent
variable

Independent
variable

is the
prediction

of:

I II III IV

Class size is predicted using first
stage regressions from

Column
I of

Table III

Column
II of

Table III

Column
III of

Table III

Column
IV of

Table III

fourth grade math
score

log avg class size
through grade 3

0.0664 20.0845 0.1245 0.2203
(0.1069) (0.1227) (0.2100) (0.1537)

fourth grade
reading score

log avg class size
through grade 3

20.0736 20.1027 20.1513 0.1260
(0.0759) (0.0870) (0.1643) (0.1084)

fourth grade
writing score

log avg class size
through grade 3

0.1364 0.1871 20.0198 0.0332
(0.1085) (0.1214) (0.1472) (0.1061)

sixth grade math
score

log avg class size
through grade 5

0.0496 0.0394 20.0522 0.2059
(0.1367) (0.1578) (0.1346) (0.1714)

sixth grade reading
score

log avg class size
through grade 5

20.0174 0.1288 20.0152 0.0843
(0.1247) (0.1462) (0.1063) (0.1410)

sixth grade writing
score

log avg class size
through grade 5

0.0675 0.0494 20.1384 20.1003
(0.1769) (0.2077) (0.1166) (0.1562)

fixed effects for each ‘‘school · expected
number of classes in the grade’’ group

yes yes

fixed effects for each ‘‘district · expected
number of classes in the grade’’ group

yes yes

fixed effects for each cohort yes yes yes yes

Standard errors are correct for 2SLS. The regressions are weighted by the number of students over whom
the dependent variable is averaged. In the school level regressions the number of observations is 3404 in
fourth grade regressions, and 1150 in sixth grade regressions. In the district level regressions there are 1752
observations (see the notes to Table I). Predicted class size is computed using the first-stage regressions shown
in Table III. The dependent variables are formed by dividing the average test score by the standard deviation
of students’ scores on that test in Connecticut. Thus, the coefficients show how test scores, measured in
standard deviations, change with the log of class size.
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statistically significant at the 5 percent level. In other words, if
reducing class size by 10 percent made students move just 2 to 4
percent closer to mastering the state’s next level of proficiency, the
improvement would be statistically significant. The random varia-
tion in class size has considerable power to identify achievement
gains.

Despite this propitious situation, the estimates in columns I
through IV do not show that smaller class sizes produce achieve-
ment gains. The estimates are mixed in sign, and none is
statistically significant at the 5 percent level. One would not wish
for smaller standard errors because as many results with the
‘‘wrong’’ as with the ‘‘right’’ sign would become statistically
significant. The simplest interpretation of Table IV is straightfor-
ward: given the standard errors, the effect of reducing class size is
rather precisely estimated to be close to zero. Because all of the
estimates are close to zero, the four specifications do not seem very
different, but in fact we should remember that they use different
enrollment residuals as the estimates as log (u). In particular, the
column III estimates do not allow parents’ moving students within
the district to produce bias, and the column IV estimates do not
allow parents’ moving students to other districts or to private
schools to produce bias.

Given that Table IV presents ‘‘well-estimated zeros,’’ one is
naturally drawn to estimate a variety of alternative specifications
to see if and when class size matters. I can show only a fraction of
the specifications I estimated. The notes to Table IV present
results for class size in the most recent grade. In Hoxby [1998] I
explore numerous other specifications and demonstrate that
results much like those in Table IV are obtained if the indepen-
dent variable is class size in grade 1, class size in grades 1 and 2,
class size with a spline (with a break at class size of 23), an
indicator for students’ ever having experienced class size below
15, or an indicator for students’ ever having experienced class size
above 30. In Table V, I show two alternative specifications that are
especially likely to be interesting, given the empirical literature
on class size. Krueger [1999], Hanushek, Kain, and Rivkin [1998],
and Ferguson [1998] argue that the reductions in class size are
more efficacious in schools that serve students who are low-
income or minorities. African-Americans are the most important
minority group in Connecticut, so I examine results that differ by
whether the school’s students come from low, medium, or high
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income families and by whether the school’s share of students who
are African-American is high, medium, or low.28

Specifically, in Table V, I estimate the specification from
column II of Table IV, except that I allow class size to have
different coefficients for schools that fit into different groups. I
first divide schools into groups where the ‘‘low income’’ group is
districts with per capital income at or below the twenty-fifth
percentile of per capita income in Connecticut (15,454 dollars in
1990), the ‘‘medium income’’ group has per capita income above
the twenty-fifth percentile and below the seventy-fifth percentile
(23,075 dollars in 1990), and the ‘‘high income’’ group has per
capita income at or above the seventy-fifth percentile. These
divisions produce the estimates in columns I through III. With one
exception, none of the coefficients is statistically significantly
different from zero, although the standard errors are still small
enough to generally identify improvements in achievement as
small as 3 to 6 percent of a standard deviation for a 10 percent
reduction in class size. In no case is the point estimate for high
income schools statistically significantly different from the point
estimate for low income schools. Also, the discernible pattern of
the point estimates does not suggest that class size reductions are
more efficacious in schools that serve low income students (if
anything, the pattern suggests the opposite). The only statisti-
cally significant estimate suggests that class size reductions
improve fourth grade reading scores in schools that serve stu-
dents from high income backgrounds. Perhaps teachers who work
in such schools are more likely to make good use of class size
reductions, or high income parents are more likely to ensure that
their ‘‘slow reader’’ gets individual attention when class size is
small.

I next divide schools into groups where the ‘‘high percentage
African-American’’ group contains districts with percent African-
American at or above the seventy-fifth percentile of districts’
percent black in Connecticut (17 percent in 1990), the ‘‘medium’’
group contains districts with percent African-American below the
seventy-fifth percentile and above the twenty-fifth percentile (1
percent in 1990), and the ‘‘low’’ group contains districts with
percent African-American at or below the twenty-fifth percentile.
In Connecticut, African-American households are concentrated in

28. In 1990, 11 percent of Connecticut’s school-aged population was African-
American, slightly less than 9 percent was Hispanic, and slightly less than 2
percent was Asian.
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urban districts, so the ‘‘high’’ group may also be thought of as the
urban group. These divisions produce the estimates in columns IV
through VI. None of the coefficients is statistically significantly
different from zero, although the standard errors are still small
enough to generally identify improvements in achievement as
small as 3 to 6 percent of a standard deviation for a 10 percent
reduction in class size. In no case is the estimate for high percent
African-American schools statistically significantly different from
the estimate for low African-American schools, and there is no
discernible pattern in the point estimates.

In summary, the estimates in Tables IV and V suggest that
class size reductions are not efficacious for improving student
achievement. The estimates do not confirm the hypothesis that
class size reductions are more efficacious in districts that contain
low income or African-American students.

3. Results from the Cross-Section Regression
Discontinuity Method

Now consider changes in class size that occur when a school
changes the number of classes in a grade. In Table VI, I treat the
data as though they were cross-section data, estimate the pre-
dicted class size function for each school based on its district’s
maximum class size and equation (9), and use the log of predicted
class size as an instrument for log class size. (This method does
not lend itself to examining the effects of class size in multiple
grades, so I use class size in the grade immediately prior to the
test.) Recall that the cross-section approach is likely to produce
unbiased results only when the sample is narrowed to the
observations just on either side of a maximum class size thresh-
old. In column I, I use the entirety of the predicted class size
function and expect to produce biased results, since most of the
function reflects permanent characteristics of the school. In
column II, I use only the observations that are within four
students of a discontinuity, so the results should be less biased. In
column III, I use only the observations that are at a discontinuity,
and I expect the results to be unbiased.

Consider first the number of observations in each regression,
shown at the bottom of Table VI. As one narrows in on the
discontinuities, the number of observations in the fourth grade
regressions falls from 1953 in column I to 76 in column III. The
number of observations in the sixth grade regressions falls from
1011 in column I to 37 in column III. As the number of observa-
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tions falls, the standard errors rise. The standard errors in
column I are such that a 10 percent reduction in class size would
have to produce an improvement of 6 to 16 percent of a standard
deviation for the improvement to be statistically significant. The
standard errors in column III are such that a 10 percent reduction
in class size would generally have to produce an improvement of
30 to 50 percent of a standard deviation for the improvement to be
statistically significant. The falling number of observations and
the rising standard errors demonstrate the extraordinary de-
mands that the cross-section method puts on data when it is
applied so as to ensure unbiased results.

The regressions in column I suggest that reductions in class

TABLE VI
IV ESTIMATES OF THE EFFECT OF CLASS SIZE, GENERATED BY CROSS-SECTION

REGRESSION DISCONTINUITY

Each cell contains the estimate from a separate regression.

Dependent variable

I II III

The predicted class size function is used:

In its
entirety

Within 4 students
of a discontinuity

Solely at the
discontinuities

fourth grade math score 20.0503 20.0972 20.0506
(0.0229) (0.0593) (0.1060)

fourth grade reading score 20.0423 20.0856 20.0746
(0.0166) (0.0454) (0.0821)

fourth grade writing score 20.0137 20.0082 20.0211
(0.0130) (0.0321) (0.0372)

sixth grade math score 20.0922 20.0992 0.0674
(0.0496) (0.0872) (0.1220)

sixth grade reading score 20.1042 20.1496 0.0250
(0.0511) (0.0992) (0.0796)

sixth grade writing score 20.0301 20.0181 0.0159
(0.0241) (0.0401) (0.0498)

number of observations in
fourth grade regressions

1953 703 76

number of observations in sixth
grade regressions

1011 374 36

The source is author’s calculations based on the Connecticut data set. The regressions are weighted by the
typical number of observations over which the dependent variable is averaged. The dependent variables are
formed by dividing the average test score by the overall standard deviation of scores on that test in
Connecticut. The independent variable is class size in most recent grade, instrumented by predicted class size.
The equation contains a fixed effect for each cohort. The cross-section method treats the Connecticut data as
though they were cross-section data and actual changes in the number of classes were not observed. The
predicted class size function uses each district’s maximum class size and the formula given by equation (9). See
text for further explanation.
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size improve achievement significantly. Four out of the six coeffi-
cients are statistically significant at the 5 percent level, and all six
coefficients have the ‘‘right’’ sign. If we were to interpret these
results naively, we would conclude that a 10 percent reduction in
third grade class size raises fourth grade math scores by about 12
percent of a standard deviation. As we narrow in on the disconti-
nuities, however, such results disappear. In column III, where
only the discontinuities are used, none of the results is close to
being statistically significant, and four out of the six estimates
have the ‘‘wrong’’ sign. Therefore, the statistically significant
results in column I are generated not by the discontinuities in the
predicted class size function, but by the suspect parts of the
function.

4. Results from the Second Identification Method (the
Within-School Regression Discontinuity Method)

Table VI shows results from the second identification method:
the within-school regression discontinuity method. For this method
I focus on events where the number of classes changed because a
modest change in enrollment (smaller than 20 percent) triggered
a maximum or minimum class size rule. I estimate equation (11),
a first-differenced version of the achievement equation, using just
the cohorts immediately before and after each event. This method
is quite powerful despite the fact that it relies purely on discontinu-
ous changes in class size driven by changes in the number of
classes. Its power derives from the fact that it compares adjacent
cohorts in the same school, who have little reason to be different
apart from their different class size experiences. In fact, the
second identification method produces standard errors so small
that if a 10 percent reduction in class size were to change test
scores by just 2 to 4 percent of a standard deviation, the change
would be statistically significant at the 5 percent level.

Column I of Table VII includes all the events in which the
number of classes changed (and affected class size) in the grade
before the test. Column II includes only the events in which the
number of classes changed in the same way (and affected class
size) in the three grades immediately before the test. In other
words, column II uses the fact that a cohort that was big enough to
have a third grade class added when it entered third grade often
had a class added in second grade and first grade as well. Despite
the small standard errors, none of the estimates in Table VII is
statistically significantly different from zero at the 5 percent level.
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TABLE VII
ESTIMATES OF THE EFFECT OF CLASS SIZE, IDENTIFICATION METHOD 2

(WITHIN-SCHOOL REGRESSION DISCONTINUITY)
Each cell contains the estimate from a separate regression (with its standard

error in parentheses).

Dependent variable

I
Independent

variable
is change in

class size (due
to the addition

or subtraction of
a class) in the

grade previous to
the test, for the 2
adjacent cohorts

II
Independent

variable
is change in

class size (due
to the addition

or subtraction of
classes) in the 3

grades previous to
the test, for the 2
adjacent cohorts

Change in fourth grade math score
between two adjacent cohorts in the
same school

0.0844 20.0714
(0.1001) (0.1605)

Change in fourth grade reading score
between two adjacent cohorts in the
same school

0.0468 20.0540
(0.0636) (0.1396)

Change in fourth grade writing score
between two adjacent cohorts in the
same school

0.1731 0.1602
(0.0976) (0.1568)

Change in sixth grade math score
between two adjacent cohorts in the
same school

0.0126 20.0207
(0.0969) (0.1588)

Change in sixth grade reading score
between two adjacent cohorts in the
same school

20.0468 0.0238
(0.0828) (0.1520)

Change in sixth grade writing score
between two adjacent cohorts in the
same school

0.1585 0.1543
(0.1300) (0.1901)

number of observations in fourth grade
regressions

147 117

number of observations in sixth grade
regressions

108 86

The source is author’s calculations based on the Connecticut data set. The regressions are weighted by the
typical number of observations over which the dependent variable is averaged. The dependent variables are
formed by dividing the average test score by the overall standard deviation of scores on that test in
Connecticut. The within-district method exploits the fact that the Connecticut data are panel data and actual
changes in the number of classes within a grade within a school are observed. The equation is estimated in
first-differences: the change in scores between back-to-back cohorts is regressed on the change in class size, if
that change in class size is the result of a small change in enrollment having triggered a maximum or
minimum class size rule.
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One would not wish for smaller standard errors because more
results with the ‘‘wrong’’ sign would become statistically signifi-
cant than would results with the ‘‘right’’ sign. The best interpreta-
tion of Table VII is that the estimated effects of class size
reductions are rather precisely estimated zeros.

Obviously, the 20 percent cutoff for a ‘‘small’’ change in
enrollment is arbitrary. I have experimented with cutoffs between
35 and 15 percent, and the results are similar.29

VII. INTERPRETATION

Estimates based on both identification methods indicate that
class size reductions have little or no effect on achievement. The
estimates are sufficiently precise that improvements that are
educationally significant would be identifiable. The two identifica-
tion methods are independent and thus provide checks on one
another. The results are also robust to specification changes, some
of which are shown above and some of which are shown in Hoxby
[1998].

The estimates are based on variation in class size that occurs
mainly in the range of 10 to 30 students per class. This is the
relevant range for American policy, but it would be a mistake to
extrapolate these results to schools in which class size is typically
higher than 30. Since most schools in developing countries have
class sizes higher than 30, the results in Tables IV through VII
neither confirm nor contradict most developing country studies. It
would also be a mistake to extrapolate these results to class sizes
of less than 10. Such tiny classes are too expensive for most
American districts to consider because the cost of a one-student
reduction increases as class size gets smaller (cost is roughly
linear in the percentage reduction in class size). A five-student
reduction from a base of 40 raises costs by only 14.3 percent; but a
five-student reduction from a base of 15 raises costs by 50 percent.

Krueger [1999] provides evidence that, in Project Star, a 10
percent reduction in class size for one year improves scores by
about 10 percent of a standard deviation, a 10 percent reduction in
class size for three improves scores by about 13 percent of a
standard deviation (compare this with the fourth grade results in
this paper), and a 10 percent reduction in class size for five years
improves scores by about 17.5 percent of standard deviation

29. These results are available from the author.
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(compare this with the sixth grade results in this paper).30 Any of
these improvements would be highly statistically significant if
they appeared in this paper, given this paper’s standard errors.

How might one explain the contrast in results in the natural
experiment and an explicit policy experiment? In both the natural
experiment and policy experiment, teachers had more opportunity
to improve achievement with smaller classes. In neither experi-
ment did teachers receive special training to take advantage of
the smaller class sizes. The difference in the results may be caused
by the fact that the natural experiment varied class size but did
not vary incentives, while the policy experiment varied class size
and contained implicit incentives for teachers and administrators
to make good use of smaller class sizes (because full enactment of
the policy depended on a successful evaluation). If this is the
correct interpretation of the difference in the results, then the
implication is that class size reduction policies should contain
built-in evaluation and incentives.

Since Connecticut school staff were unaware of the natural
experiment, they could not have reacted to the evaluation.
Explicit policy experiments may work differently because of
Hawthorne effects or other reactive behavior on the part of
participants.

One might attribute some of the difference in results to the
necessarily transitory nature of population variation (from the
teachers’, not students’, point of view). That is, teachers experi-
ence small class sizes repeatedly, but not every year. Teachers do
not receive training to take advantage of smaller class sizes in a
systematic way—in other words, they may not vary their primary
classroom style much when they have the opportunities presented
by a smaller class. This interpretation would suggest that reduc-
tions in class size should be combined with instruction for
teachers that helps them modify their teaching techniques. This
cannot, however, be the entire explanation. Even if she does not
lecture differently to a smaller class, a teacher can devote more
effort to each student during every teaching activity that has an
individual element. Many of these activities are part of a teacher’s
basic repertoire: answering questions, correcting assignments,
dealing with disciplinary problems, tutoring a student who is
ahead or behind the class, talking to parents, and so on. Also, the

30. The average ‘‘small’’ class in Project Star was 30 percent smaller than the
average ‘‘regular’’ class. Students’ scores increased by about 30 percent of a
standard deviation on math and reading tests after one year.
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Project Star results were achieved after only one year of smaller
class size, and the teachers involved did not receive instruction
about changing their primary teaching techniques.

VIII. CONCLUSIONS

In this study I use natural variation in the school-aged
population to identify the effects of class size on student achieve-
ment. This approach has three benefits. First, the variation in
class size that I study is credibly exogenous. It is not variation
generated by parents’ choices—choices that are affected by par-
ents’ incomes and parents’ assessments of the attention their
children need. Second, the actors in the natural experiment I
examine were not aware of being evaluated or mindful of rewards
being contingent upon the outcome. Real policies that reduce class
size, such as the 1996 California initiative and the 1999 federal
initiative, rarely include evaluation or repercussions (such as the
funds being taken away if the policy has no effect). It is important
that research mimic the incentives that exist under real policies.
Third, natural population variation generates fluctuations in
class size that are in the range relevant to current policy.

This study demonstrates how population variation can be
used to consistently estimate the effect of class size on student
achievement. I outline two independent methods for using popula-
tion variation. The first method is based on isolating the credibly
random component of the natural variation in population for a
grade in a school. Random variation in the population generates
exogenous variation in class size. The second method is based on
exploiting the discontinuous changes in class size that occur when
a small change in enrollment triggers a maximum or minimum
class size rule and thereby changes the number of classes in a
grade in a school. Both methods produce results that are appropri-
ate for considering class size changes in the range of 10 to 30
students.

Using both methods, I find that reductions in class size have
no effect on student achievement. The estimates are sufficiently
precise that, if a 10 percent reduction in class size improved
achievement by just 2 to 4 percent of a standard deviation, I would
have found statistically significant effects in math, reading, and
writing. I find no evidence that class size reductions are more
efficacious in schools that contain high concentrations of low
income students or African-American students.
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The results just described are far less likely to suffer from
omitted variables bias and endogeneity bias than are typical
estimates that depend on variation in class size that is (directly or
indirectly) generated by parents’ decisions, teachers’ decisions,
administrators’ decisions, or policy-makers’ decisions. I demon-
strate that methods that rely on suspect variation display the
expected patterns of bias.

The methods I employ have the advantage that participants
are not aware of being evaluated. In this way, the experiments
mimic actual class size reduction policies, which rarely include
evaluations or incentives for schools to make good use of the
opportunities provided by smaller class sizes. If one were consis-
tently to find that policy experiments that reduced class size and
contained incentives produced greater improvements in test
scores than natural experiments that just reduced class size, one
might conclude that the incentive environment is important. That
is, policies that just provide more resources may be significantly
less efficacious than policies that link resources to performance.

APPENDIX TABLE

Mean Std. dev. 1st %ile 99th %ile

enrollment in grade 1 68.884 33.112 15 180
enrollment in grade 2 63.340 29.523 15 161
enrollment in grade 3 62.013 28.461 15 158
enrollment in grade 4 62.006 31.356 14 177
enrollment in grade 5 63.577 35.049 12 200
enrollment in grade 6 82.385 67.857 10 340
class size in grade 1 21.414 5.539 8 32
class size in grade 2 21.152 5.248 8 32
class size in grade 3 22.299 5.486 12 33
class size in grade 4 22.654 5.795 11 34
class size in grade 5 21.886 6.277 13 32
class size in grade 6 23.516 6.420 10 33
residual log enrollment in grade 1* 0.000 0.103 20.707 1.586
residual log enrollment in grade 2* 0.000 0.106 20.650 1.813
residual log enrollment in grade 3* 0.000 0.105 20.696 0.947
residual log enrollment in grade 4* 0.000 0.107 21.147 1.343
residual log enrollment in grade 5* 0.000 0.106 20.727 0.519
residual log enrollment in grade 6* 0.000 0.096 20.673 0.495
residual log kindergarten cohort* 0.000 0.080 22.291 0.627
minimum class size grade 1 15.058 1.498 6 20
minimum class size grade 2 15.090 1.542 6 20
minimum class size grade 3 15.099 1.553 6 20
minimum class size grade 4 15.165 1.713 6 22
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